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1. Introduction

One of the most interesting developments and applications of string theory in the recent

years has been the study of the properties of strongly coupled gauge theories at high

temperatures via the AdS/CFT duality [1]. At sufficiently high temperatures gauge theories

go over into a plasma phase. According do the AdS/CFT dictionary the plasma phase

is represented in the holographic dual as a gravitational background containing a black

hole [2].

Earlier applications of asymptotically AdS black holes to the study of strongly cou-

pled gauge theories have focused on the thermodynamics of the system, typically studying

Hawking temperature, entropy, free energy and phase transitions, which can be studied

using the Euclidean section of the black hole metrics.

The recent interest has however derived from the study of non-equilibrium dynamics

and here it is essential to use the real time Lorentzian background [3]. One of the main

motivations is the experimental progress in the study of the Quark-Gluon plasma at the

Relativistic Heavy Ion Collider (RHIC) in Brookhaven. It turned out that the state of

matter created at the heavy ion collisions at RHIC is most likely to be understood as a

strongly coupled Quark Gluon plasma (for a review see [4]). This poses great problems for

the theory since usual perturbative field theory techniques are not applicable and lattice

simulations are mostly confined to the equilibrium regime. Therefore the AdS/CFT duality

has emerged as a useful tool for studying the properties of the plasma phase on non-abelian

gauge theories at strong coupling.

One of the most impressive results in this line of investigation has been the calculation

of the shear viscosity in holographic gauge theories [5]. There are two extremely interesting
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aspects of these kind of calculations. One is that the actual numerical value turns out to be

consistent with experiments ( see e.g. [6]). The other, more theoretical one, is the fact that

all calculations that have been done so far in different holographic theories have always

produced the same result for the ration of the shear viscosity over the entropy

η

s
=

1

4π
. (1.1)

This gave rise to the conjecture that the value is universal and represents a lower bound

for all physical systems [7].1 This universality was first suggested through a case by case

investigation, while attempts at a general proof have always faced some restrictions over

the class of metrics involved [9].

As system under consideration we have chosen the holographic dual to the non-

commutative N = 4 gauge theory [10, 11]. We will see that understanding holography

in this theory is by itself an interesting endeavour. In view of the calculations of the

shear viscosity additional interest derives from the fact that the non-commutative theory

is anisotropic in space. We will consider the theory with two space coordinates (y, z) be-

ing non-commutative and leave (t, x) usual commutative spacetime coordinates. Now we

remember that the viscosity is actually a fourth rank tensor relating the gradients in the

local fluid velocity to the dissipative part of the stress tensor

TD
ij = ηij,kl

∂uk

∂xl
. (1.2)

Assuming the usual SO(3) rotational invariance leaves only two independent tensor struc-

tures, corresponding to shear viscosity η and bulk viscosity ζ. In the anisotropic, non-

commutative theory we have however only an SO(2) symmetry and this gives rise to a

much richer tensor structure. We will be interested only in the shear part, i.e. the part

that determines the diffusion of momentum into transverse directions. More precisely we

have to distinguish between three possible shear viscosity coefficients corresponding to ei-

ther momentum in the commutative direction diffusing into a non-commutative direction,

momentum in a non-commutative direction diffusing into a commutative direction and

momentum in a non-commutative direction diffusing into a non-commutative direction.2

On a technical level the shear viscosities can be calculated in various different ways,

either by searching for a diffusion pole in the retarded two point function of the momentum

density operators or by Green-Kubo type formulas using the zero-momentum and zero fre-

quency limit of the imaginary part of the retarded equilibrium Greens function of traceless

components of the stress tensor.

We therefore need to understand first how the field theory stress tensor can be obtained

from the holographic dual. In holographic duals the stress tensor is usually generated by

a fluctuation of the metric components. In the non-commutative theory it is important to

1See however recent attempts to construct “gedanken” counterexamples in [8].
2Anisotropic shear viscosities are well-known in the theory of liquid crystals where there is a director

field indicating a preferred axes of alignment. The three different shear viscosities that parameterise the

different momentum diffusion processes relative to the director field are called Miesowicz coefficients [13].
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distinguish between the closed string metric, in terms of which the supergravity solution

is formulated and the open string metric, which is the metric that is seen by open strings

ending on a D-brane in a B-field background [12].

In this paper we will argue that the correct variables to look at in order to define the

gauge invariant operators in the dual field theory are the open string variables: the open

string metric, the open string coupling and the Θ-parameter that defines the star product

on the brane. The holographic stress tensor is therefore defined through the fluctuations

of the open string metric. As we will see it is extremely important to realize this in order

to be able to obtain a well defined field theory stress tensor from the supergravity dual.

In fact it turns out that the temperature dependent part of the holographic stress tensor

calculated with the help of the open string metric is precisely the same as the one in the

usual commutative N =4 theory. Our findings are in agreement with the arguments given

in [14] and also in [15]

Since we define the stress tensor as the operator that is generated in the holographic

supergravity dual by open string metric fluctuations it necessarily turns out to be symmet-

ric. A consequence of this is that there are only two different Green-Kubo type formulas

for the viscosity coefficients

η1 = − Im
1

ω

∫

dt d3x eiωtθ(t)〈[Tyz(t,x), Tyz(0, 0)]〉 , (1.3)

η2 = − Im
1

ω

∫

dt d3x eiωtθ(t)〈[Txy(t,x), Txy(0, 0)]〉 , (1.4)

that are not related to each other by either symmetry of the stress tensor or the SO(2)

symmetry that rotates (y ↔ z).

In the following we will compute both of the above stress tensor correlators and will

also find the diffusion pole of the retarded correlator of the momentum density operator

in y direction allowing for gradients in the x direction. We advance here that all three

calculations end up in the universal value (1.1).

In the next section we present the supergravity background, establish our conventions

and define an effective five dimensional theory by reduction on the S5. In section three

we compute the renormalised temperature dependent part of the holographic stress tensor.

Section four is the core of this paper where we consider the various retarded Greens function

outlined above and show that the shear viscosity takes the universal value (1.1) even in

the anisotropic situation presented by the non-commutative theory. We summarise our

conclusions in section five and outline possible interesting future investigations.

2. The background and dimensional reduction

In [10, 11] several geometries dual to non-commutative N=4 supersymmetric Yang-Mills

theory where proposed. We shall concentrate on the one representing a finite temperature

quantum field theory with non-commutative plane along spacelike directions (y, z). In the

string frame the metric is

ds2
10,string = H−1/2

(

−fdt2 + dx2 + h(dy2 + dz2)
)

+ H1/2(f−1dr2 + r2dΩ2
5) , (2.1)
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where

f = 1 − r4
H

r4
; h =

1

1 + θ2H−1
; H =

L4

r4
. (2.2)

The AdS/CFT dictionary sets L4 = 4πĝNα′2 where ĝ = g2
YM. One easily sees that tem-

perature and entropy density are independent of the non-commutativity parameter θ

T =
rH

πL2
; s =

N2π2T 3

2
. (2.3)

In order to ease comparison with previous calculations in the literature we shall introduce

new coordinates and definitions

u =
r2
H

r2
; uT =

r2
H

L2
= (πTL)2 ; a = θuT , (2.4)

in terms of which the full background acquires the following form, in the Einstein frame

ds2
10,E = h−1/4

[

H−1/2
(

−fdt2 + dx2
1 + h(dx2

2 + dx3
3)

)

+
L2

f

du2

4u2
+ L2dΩ2

5

]

, (2.5)

f(u) = 1 − u2 ; h(u) =
u2

u2 + a2
; H(u) =

u2

u2
T

,

and

e2φ = h ,

H =
a

uT
(hH−1)′dy ∧ dz ∧ dr ,

F(3) =
a

uT
(H−1)′dt ∧ dx ∧ dr ,

F(5) = h(H−1)′dt ∧ dx ∧ dy ∧ dz ∧ dr + 4L4ω(5) =∗ F(5) . (2.6)

In the rest of the paper we will work with an effective five dimensional theory that is defined

by dimensional reduction along the S5 sphere. Following [21] we define a five dimensional

metric through

ds2
10,E = e2αϕds2

5 + e2βϕL2dΩ2
5 , (2.7)

where α =
√

5/3/4 and β = −
√

3/5/4 are chosen such that ϕ is a canonically normalised

scalar3 and ds2
5 is the five-dimensional Einstein frame metric. The action of this effective

five dimensional theory is given by4

S5 =
1

2κ2
5

∫

d5x

[√−g5

(

R− 1

2
(∂φ)2− 1

2
(∂ϕ)2− 1

2
e2φ(∂χ)2− 8

L2
e8αϕ+e

16
5

αϕR5

)

(2.8)

− 1

12
eφ−4αϕF 2

(3) −
1

12
e−φ−4αϕH2 − 2

L

(

A(2) ∧ dB − dA(2) ∧ B
)

]

.

3On shell, the breathing mode ϕ is related to the dilaton φ. Since ds2
10,E = e−φ/2ds2

10,string ,

from (2.1), (2.5) and (2.7) it follows that e2βϕ = e−φ/2 = h−1/4, or ϕ =
q

5
3
φ .

4Our conventions are as follows

H = dB ; F(1) = dA(0) ; F(3) = dA(2) + A(0) ∧ H ; F(5) = dA(4) +
1

2
A(2) ∧ H −

1

2
B ∧ dA(2) .
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Here R5 denotes the curvature of the five-dimensional sphere of radius L, i.e. R5 = 20
L2 and

χ = −A(0). The five-dimensional gravitational coupling is given by κ2
5 = 4π2L3/N2. The

resulting equations of motion are given by

Rµν =
1

2
∂µφ∂νφ+

1

2
∂µϕ∂νϕ+

1

2
e2φ∂µχ∂νχ+

8

3L2
e8αϕgµν−

1

3
e

16α
5

ϕR5gµν (2.9)

+
1

4
eφ−4αϕ

(

(F(3))
2
µν−

2

9
(F(3))

2gµν

)

+
1

4
e−φ−4αϕ

(

H2
µν−

2

9
H2gµν

)

,

¤ϕ =
64α

L2
e8αϕ − 16

5
αe

16α
5

ϕR5 −
α

3
eφ−4αϕ(F(3))

2 − α

3
e−φ−4αϕH2 , (2.10)

¤φ = (∂χ)2e2φ +
1

12
eφ−4αϕ(F(3))

2 − 1

12
e−φ−4αϕH2 , (2.11)

d(e2φ ∗ dχ) = −eφ−4αϕH ∧ ∗F(3) , (2.12)

d(eφ−4αϕ ∗ F(3)) =
4

L
H , (2.13)

d(e−φ−4αϕ ∗ H) = −eφ−4αϕdχ ∧ ∗F(3) −
4

L
F(3) . (2.14)

3. The holographic stress tensor

The holographic stress tensor of the strongly coupled non-commutative N = 4 gauge

theory has not been calculated until now in the literature. In fact holography itself is

poorly understood in this background, mostly because the induced metric (2.7) at a fixed

r = const. scales anisotropically as one goes with r → ∞ where it becomes degenerate.

The authors of [14] observed however that the anisotropy in the dependence on r encodes

just the anisotropic decoupling limit [10 – 12] for the metric components gyy and gzz. The

same is true for the dependence of the dilaton on r. If one therefore asks what are the

bulk fields that act as sources for the field theory operators it is necessary to use the open

string variables defined in [12]

Gµν = gµν −
(

Bg−1B
)

µν
, (3.1)

Θµν = 2π

(

1

g + B

)µν

A

, (3.2)

Gs = gs

(

detG

det(g + B)

)1
2

, (3.3)

where the subscript A denotes antisymmetrisation. One can easily check that, for the

background given in (2.1), the open string metric Gµν is nothing but the usual (planar) AdS

black hole, the open string coupling Gs is constant, and Θ32 = θ. In particular it follows

that there is no anisotropy in the open string metric. Still, there is of course an anisotropy

in terms of the open string variables because of the non vanishing Θ components which may

lead to nontrivial physical effects (for example on the drag force of a moving quark [16]).

We define the energy-momentum tensor in the strongly coupled non-commutative field

theory as the operator that is sourced by the open string metric. Therefore we have to

find out how the system responds to a variation of the open string metric keeping the

non-commutativity Θ and the open string coupling Gs fixed.

– 5 –
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However the five dimensional action is formulated in terms of g5
µν , whereas the open

string variables are written in terms of the closed string metric.

The solution to δΘ = 0 gives the induced variations for the B-field. More explicitly:

δΘµν = −2π

[(

1

g + B

)

(δg + δB)

(

1

g + B

)]µν

A

= 0 , (3.4)

and solving for δB gives

δB =
a

u

















0 0 −δg14 δg13 0

0 0 −δg24 δg23 0

δg14 δg24 0 u2(δg33+δg44)
u2−a2 δg45

−δg13 −δg23 −u2(δg33+δg44)
u2−a2 0 −δg35

0 0 −δg45 δg35 0

















. (3.5)

Similarly we find the induced variations on the dilaton. We set δGs = 0, which is

δGs = Gs

[

δφ +
1

2
(G−1)µνδGµν − 1

2

(

1

g + B

)µν

(δgµν + δBµν)

]

= 0 , (3.6)

and find

δφ = −H1/2

2h

a2

(u2 − a2)
(δg33 + δg44) . (3.7)

Notice that also the S5 breathing mode ϕ is linked, on shell, with the dilaton (see foot-

note 3). Therefore we also have an induced variation of the form

δϕ =

√

5

3
δφ . (3.8)

It is important to notice here that we have written the variations of B and φ in terms

of the variations of the closed string metric gµν = g10,string
µν . Now we need to relate these

to the variations of the five dimensional Einstein metric g5. From (2.7)

g5
µν = e−2αϕg10,E

µν = e−2αϕ−φ/2g10,string
µν = e−4φ/3gµν , (3.9)

we obtain

δg5
µν = h−2/3

(

δgµν − 4

3
gµνδφ

)

. (3.10)

Following [22] we define a quasilocal stress tensor in the gravity theory as

τρλ
G =

2√
−Γ

δS

δΓρλ
, (3.11)

where Γµν = Gµν − ξr
µξr

ν . such that ξr
µ is an outward looking normal vector to the hyper-

surface r = const fulfilling ξr
µξr

νG
µν = 1.

Since we work with the effective five-dimensional theory (2.8) we will first vary with

respect to g5
µν . We therefore also need the restriction of the five dimensional metric onto the

hypersurface r = const. We will call this γµν , so γµν = g5
µν − ξr,g

µ ξr,g
ν and ξr,g

µ ξr,g
ν g5,µν = 1.

– 6 –
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There are three contributions. The first is standard and comes from the variation of

the purely gravitational Einstein-Hilbert and Gibbons-Hawking terms in the action

τ̃ρλ
g =

1

κ2
5

(

Kρλ − γρλKc
c

)

, (3.12)

where Kµν is the extrinsic curvature of the metric that is induced at r = const by the

fivedimensional metric g5
µν . The other contributions come from the induced variations on

the B-field and the dilaton and are given by

τ̃ρλ
B = − 1

κ2
5

ξr
τ

(

e−φ−4αϕHτσκ +
1

L
ǫτµνσκAµν

)

δBσκ

δγρλ
, (3.13)

τ̃ρλ
φ = − 1

κ2
5

ξr
τ∂

τφ
δφ

δγρλ
, (3.14)

τ̃ρλ
ϕ = − 1

κ2
5

ξr
τ∂

τϕ
δϕ

δγρλ
. (3.15)

All the τ̃µν ’s have been defined multiplied with a factor of 2√
−γ5

. Now we need to convert

τ̃µν
g into τµν

G according to5

τµν
I :=

√−γ√
−Γ

∑

λ≤ρ

τ̃ρλ
I

δg5
ρλ

δGµν
; I ∈ {g,B, φ, ϕ} . (3.16)

The total stress tensor is now simply the sum of the different contributions

τµν
total = (τµν

G + τµν
B + τµν

φ + τµν
ϕ ) . (3.17)

Finally we define the vacuum expectation value of the stress tensor in the field theory

as

〈T ab〉 = lim
r→∞

√
−Γξa

ρξb
λτρλ

G,reg . (3.18)

In the last step a suitable regularization procedure has to be applied on τG,total. In principle

one would need to construct local counterterms on the boundary to cancel the divergences

as in [24]. In the case of the non-commutative background these counterterms have not

yet been constructed in the literature. Therefore we employ the somewhat simpler method

of subtracting the gravity stress tensor of a reference spacetime before taking the limit

r → ∞ [22]. As reference spacetime we take the zero temperature solution. This is

sufficient for our purposes since we are only interested in the temperature dependent part

of the stress tensor. We find

〈T ab〉 =
π2T 4N2

8
diag(3, 1, 1, 1) , (3.19)

which is exactly the same result as for the commutative theory. It is worth emphasising the

contrast between this result and the one found in [23] where the stress-energy tensor of an

asymptotically flat background produced by a D1 − D3 bound system was computed and

found to be anisotropic. In particular taking the naive decoupling limit in this solution leads

to negative pressures. It would be interesting to find an interpretation for this mismatch.

5We should actually compute δγ5
ρλ/δΓµν , but there is a projection implicitly in the definition of τ so

that it is OK to use the full metrics here.
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4. Fluctuations

The system of equations (2.9)-(2.14) involves a large number of fields. Therefore, looking for

decoupled fluctuations is now a more involved task, and calls for symmetry analysis. In the

search for dispersion relations, that show up as poles in retarded correlators, it is customary

to assume a plane wave like perturbation of the form Φ(u, k) = φ(u)eikx. For kµ = (−ω,~k)

this ansatz leaves a little group O(2) of rotations in the transverse plane. There is another

O(2) remnant of the isotropy group that is broken by the background as soon as the

anticommutativity parameter a 6= 0 is switched on. When ~k has a component along the

noncommutative plane the symmetry group is completely broken. Perturbations involve

typically all the fields and become extremely tedious to handle. The easiest situations

occurs when ~k = (k, 0, 0), since in this case there is an overall O(2) symmetry group and

the usual tensor decomposition applies. In this paper, only such a family of plane waves

will be considered. We will examine in detail, only two channels which directly measure

the shear viscosity: the scalar channel (O(2) helicity h = 2), and one of the vector channels

(h = 1). In this section gµν will always stand for the five-dimensional Einstein frame

metric.

4.1 Scalar channel

When the polarization of the metric fluctuation lives inside the non-commutative (y, z)-

plane , δgyz rotates with O(2) as a tensor of spin 2 and decouples from the rest. For

such a polarization we expect to find no poles on the retarded correlator. Therefore, the

usual alternative is to use Kubo formula, and for this, just a time dependent fluctuations

is enough δgy
z = e−iωtρω(u). The equation that ρω(u) satisfies is the usual one for a

minimally coupled scalar

ρ′′ω − 1 + u2

uf
ρ′ω +

w2

uf2
ρω = 0 , (4.1)

whose solution, as an expansion in powers of w = ω
2πT is the usual one

ρω(u) = (1 − u2)−
i
2
w(1 + O(w2) + . . .) . (4.2)

The normalisation ρω(0) = 1 is in agreement with the fact that the five-dimensional per-

turbation and the open-string perturbations are related by δgy
z = δGy

z. In a sense, this

anticipates the expected fact that in this channel no signal of the non-commutative effects

will show up. It can be further checked by computing the boundary gravitational action. A

Fourier synthesis like δgy
z(t, u) =

∫

dω
2π e−iωtf(ω)ρω(u) may be plugged into the bare action

S = S5 + SGH , (4.3)

where SGH = 1
8πG5

∫

u=ǫ d4xK stands for the usual Gibbons-Hawking term. After some

algebra, the boundary action is found to be

S =

∫

d3x
dω

2π
f(ω)f(−ω)F(u)

∣

∣

∣

∣

u=1

u=ǫ

, (4.4)

– 8 –
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where the flux is given by

F(u) = − N2

8π2L3

(

u2
T ((3u2 − 5)a2 + u2(u2 − 3)

Lu2(a2 + u2)
− iw

u2
T

L
+ . . .

)

. (4.5)

The divergence at u = 0 calls for boundary counterterms to be added to the bare ac-

tion (4.3). However it only shows up in the real part! Using the holographic recipe for

calculating retarded Greens functions [18] and the Green-Kubo formula (1.3) we find

η1 = lim
ω→0

1

ω
Im(−2F(u = 0)) =

N2πT 3

8
, (4.6)

which leads to the universal value η/s = 1/4π for the shear viscosity to entropy ratio.

4.2 Vector channel: dispersion relations

Let us now choose δgx
z. This perturbation has an index along the propagation axis

x and another one, z, along the non-commutative plane.6 The irreducible set of fluc-

tuations involves six fields components, all transforming as vectors of O(2). Setting

δgt
z = e−i(ωt+kx)ρt, δgx

z = e−i(ωt+kx)ρx, δAtz = e−i(ωt+kx)uT αt, δAxz = e−i(ωt+kx)uT αz

and δBty = e−i(ωt+kx)uT βt, δBxy = e−i(ωt+kx)uT βx, the six fields ρx, ρt, αt, αz , βt and βx

satisfy a system of six coupled second order ordinary differential equations, plus three con-

straints. The system is not overdetermined and one can find easily three linear differential

relations that automatically vanish. As explained in [19], the natural variables to look for,

are combinations which are invariant under the residual coordinate gauge transformations.

Z = qρt + wρx , (4.7)

V = qαt + wαx , (4.8)

W = qβt + wβx . (4.9)

This set of variables collapses into a system of 3 coupled differential equations. Further

decoupling occurs if one defines the new set (Z, V,W ) → (P, V,Q) with

P = Z − a

h
W ; Q = W +

ah

u2
Z . (4.10)

Then we find a coupled system for (V,Q)

Q′′ − q2f2 + (3u2 − 1)w2

Ufa(w2 − fq2)
Q′ +

u(w2 − fq2) − 4f

u2f2
Q − 4qw

f(w2 − fq2)
V = 0 , (4.11)

V ′′ − q2f2 + (3u2 − 1)w2

Ufa(w2 − fq2)
V ′ +

u(w2 − fq2) − 4f

u2f2
V − 4qw

f(w2 − fq2)
Q = 0 , (4.12)

6This choice of index rising simplifies the equations, and affects the normalisation of the correlator, but

does not modify the position of the searched poles.
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and a decoupled equation for P

P ′′−h

(

((u2+1)w2−f2q2)

Ufa(w2−fq2)
+a2 3q2f2+(5u2 − 3)w2)

u3f(w2−fq2)

)

P ′+h2

(

w2−fq2

Ufa2

+a2 2uf2q4+4f(2u4−4u2−uw2 + 2)q2+2w2(−2u4+6u2+w2u−4)

u4f2(w2−fq2)

+a4 f2q4−2fw2q2+w2(w2−4Ufa)

u5f2(w2−fq2)

)

P = 0 .

The system (4.11) and (4.12) is independent of a. The natural combination to consider as a

gravitational perturbation is P , and we see that the equation for it is explicitly dependent

on a, signalling a possible influence of this parameter in the final solution. However, as

usual, we shall try a perturbative solution in λ

P (u) = f(u)−iw/2 (P0(u) + λP1(u) + . . .) , (4.13)

with w → λ(−iΓq2), q → λq, and normalised as P0(1) = 1, P1(1) = 0. One readily obtains

P (u) = f(u)−iw/2 1

h(u)(a2 + 1)

(

1 + i
q2

2w
f(u) + O(w2, q4,wq

2)

)

. (4.14)

It is helpful now to remember the induced variations on the B-field in (3.5). Demanding as

before δΘ = 0 we find that in the new variables this is just Q = 0. Using this and plugging

the solution for W back into the definition of P we find P = Z/h. If we want to know

the dispersion pole we need to set Z = hP |u=1 = 0. Notice that the overall normalisation

of the solution for P or Z is irrelevant here! We observe therefore that the hydrodynamic

pole sits at the same position as in the commutative case [19].

w = −i
q2

2
. (4.15)

This is however not yet enough to infer that the shear viscosity is indeed given by its

universal value since the diffusion constant for momentum diffusion is actually given by
η

ǫ+p . So far we have only learnt that the diffusion constant is D = 1
4πT . Now it is important

to know the energy momentum tensor in equilibrium. As we have shown explicitly it is

given by the same expression as in the commutative case and obeys ǫ+p = Ts, from which

we can infer now the value of the shear viscosity as

η2

s
=

1

4π
. (4.16)

4.3 Vector channel: Kubo formula

In the previous section we have computed the pole in the retarded correlation function

of the gauge invariant variable Z. Since Z contains δgt
z and the latter is the source for

the momentum density Pz in z-direction what we really have computed is the diffusion

constant for the process of momentum pointing along the non-commutative z-direction

and diffusing into the commutative x-direction. By the remnant SO(2) symmetry this is
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the same as the diffusion constant for the process of the y-momentum diffusing into x-

direction. On the other hand we have seen already, that viscous flow taking place in the

non-commutative plane along is governed by the universality of the shear viscosity. This

leaves us to determine the diffusion constant for the process of momentum density along

the commutative direction py diffusing into a non-commutative direction x. To this end

we will employ the Kubo formula [20]

η3 = − lim
ω→0

Im Gxy,yx(ω, 0)

ω
, (4.17)

where Gxy,yx = Gxy,xy is the retarded Greens function of Txy. In fact the symmetry of the

stress tensor defined through the variation of the open string metric implies immediately

that η3 = η2, so we should recover (4.16). Nevertheless, it is an interesting exercise to

recover the result of the previous section from the Kubo formula. Consider the purely

time-dependent set of perturbations

δgx
z =

∫

dω

2π
e−iωtΦ(ω)ρω(u) , δAtz

= uT

∫

dω

2π
e−iωtΦ(ω)αω(u) , δBxy

= uT

∫

dω

2π
e−iωtΦ(ω)βω(u) . (4.18)

One readily finds that αω obeys a first order equation

α′
ω = −2a

u3
ρω − 2

u
βω. (4.19)

Inserting this into the equations for ρ and β, they can be casted as follows

ρ′′ω +

(

2h

u
− 3 − u2

uf

)

ρ′ω +
w2

uf2
ρω − 2ah

u

(

2

uf
βω − β′

ω

)

= 0 , (4.20)

β′′
ω +

(

2h

u
− 1 + u2

uf

)

β′
ω +

(

w2

uf2
− 4h

u2f

)

βω − 2ah

u3
ρ′ω = 0 . (4.21)

We expect four independent solutions to this system, two of which will be incoming at

the horizon. Parametrising the general solution by two constants, which we take to be the

boundary values ρ(0) = ρ0 and β(0) = β0 we find, up to order O(w2)

ρ(u) = f(u)−iw/2 ρ0(a
2 + u2) − β0u

2a

a2 + u2

(

1 − iw

2

ρ0u
2a2

ρ0(a2 + u2) − β0u2a

)

, (4.22)

β(u) = f(u)−iw/2 β0a
2

a2 + u2

(

1 − iw

2

ρ0u
2

β0a

)

, (4.23)

and from these, α(u) can be obtained integrating (4.19)

α(u) = f(u)−iw/2 ρ0af(u)

u2

(

1 +
iw

2
Cα

u2

ρ0af(u)

)

. (4.24)
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Now, in order to proceed, we must compute the boundary action. As usual, on shell, the

regulated action S = SBulk + SGH + Sct can be expressed in terms of boundary data

S =

∫

d3x
dω

2π
Φ(~x, ω)

(

FBulk(ω, u)|u=1
u=ǫ + FGH(ω, ǫ) + Fct(ω, ǫ)

)

Φ(~x, ω) . (4.25)

We don’t know the structure of counterterms. However, one can prove that the imaginary

part of FBulk(ω, u) + FGH(ω, u) is already a conserved flux, and hence independent of u.

Im
(

FBulk(ω, u) + FGH(ω, u)
)

= −w
u2

T

L

N2

8π2L3

(

ρ2
0 + (β2

0 + ρ2
0)a

2 − 2β0ρ0a
)

. (4.26)

This is all we need in order to compute the shear viscosity, and conforms with the expec-

tation that the hydrodynamic transport coefficients should not depend on the UV details

of the theory.

Comparing with (4.5), we see that the resulting value of the shear viscosity depends

on the correct choice of boundary conditions. Each one selects a corresponding quantum

operator in the boundary theory.

It is very interesting to compute the result corresponding to the operator O5 that

couples to the five dimensional closed string bulk metric g5. This can be done by simply

setting ρ0 = 1, β0 = 0. Plugging this into (4.26) and (4.17) we would end up with

Im GO5,O5 = −ω
s

4π
(1 + a2) . (4.27)

Using this would lead to a non-universal value for the shear viscosity and moreover would

be in conflict with the results in the previous section.

Let us consider now the correct boundary stress tensor defined as the operator that

couples to the open string metric. Using (3.5) it is easy to see that

β = − a

u2
ρ . (4.28)

solves the constraint for varying only the open string metric. For the solutions given

in (4.22) and (4.23), the choice ρ0 = 0, β0 = 1/a fulfils this condition. Using furthermore

the definition of the open string metric (3.1) it is not difficult to see that this corresponds

precisely to an open string perturbation that obeys δGx
z = 1 at the boundary. Using this

solution we find now for the imaginary part of the retarded correlator

Im G(ω, 0) = −ω
s

4π
. (4.29)

as expected.

5. Conclusions and discussion

We have calculated the shear viscosity to entropy ratio in the holographic dual to a non-

local non-commutative field theory. Although this theory is intrinsically anisotropic it

turned out that the shear viscosities satisfy the conjectured bound exactly. We think this

a rather remarkable result and collects further strong evidence in favour of the conjecture.
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Although we were able to solve some important problems in this particular holographic

theory there are many interesting questions that could be addressed in future work.

One puzzling question is related to the membrane paradigm. It has been shown that

hydrodynamic behaviour of black holes also arises in a purely gravitational perspective [25].

Explicit gravitational counterparts of shear modes have been constructed in the membrane

paradigm approach. In the non-commutative theory under consideration we emphasized

the importance of the distinction between the open and closed string metric. From the

pure gravity perspective however there is no reason a priori to consider the particular

combination of fields defining the open string metric. From a bulk gravity perspective it

is far more natural to consider the closed string metric. Using therefore the membrane

paradigm approach would suggest to consider closed string metric perturbations and it is

far from clear if the hydrodynamic shear modes defined within the membrane paradigm

using the bulk metric will give rise to the universal result (1.1). This points to a possible

discrepancy between the membrane paradigm and holography!

Another aspect concerns the holographic renormalization of the non-commutative the-

ory. We have successfully implemented a simple subtraction scheme to compute a renor-

malised stress tensor. A much more powerful approach of holographic renormalization

is to construct local covariant counterterms on the boundary. Such a program looks ex-

tremely difficult to realize if one considers the closed string variables, mostly because of the

anisotropic behaviour in the holographic coordinate u the non-commutative and commuta-

tive directions. We have pointed out that this anisotropy in the scaling with r is somewhat

fiducial since the correct variables to consider are the open string variables in which the

metric is perfectly isotropic. This suggests that the holographic renormalization program

of the non-commutative theory should be based on the the open string variables!

A new difficulty arises when one switches on momentum q in the non-commutative

direction. It turns out that the differential equations for the linear fluctuations of the bulk

fields are not any more of Fuchsian type but acquire essential singularities at the boundary.

Moreover, many more fluctuations mix with each other than for the fluctuations considered

in this paper. Therefore this presents as much a technical difficulty due to the high level

of mixing as a conceptual one due to the presence of the essential singularities at the

boundary.

Finally we want to point out that the techniques developed in this paper should be

sufficient to calculated the stress tensor and the stress tensor correlators at zero momen-

tum also in other non-commutative backgrounds such as the non-commutative open string

theory [26]. We hope to make progress on these questions in future work.
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